ACADEMIC PUBLICATIONS

REPRODUCIBILITY OF BACTERIAL CELLULOSE NANOFIBERS OVER SUB-CULTURED GENERATIONS FOR THE DEVELOPMENT OF NOVEL TEXTILES

WOOD, J., VAN DER GAST, C., RIVETT, D., VERRAN, J., REDFERN, J.

Frontiers in Bioengineering and Biotechnology

https://doi.org/10.3389/fbioe.2022.876822

The textile industry is in crisis and under pressure to minimize the environmental impact on its practices. Bacterial cellulose (BC), a naturally occurring form of cellulose, displays properties superior to those of its cotton plant counterpart, such as enhanced purity, crystallinity, tensile strength, and water retention and is thus suitable for an array of textile applications. It is synthesized from a variety of microorganisms but is produced in most abundance by Komagataeibacter xylinus. K. xylinus is available as a type strain culture and exists in the microbial consortium commonly known as Kombucha. Whilst existing literature studies have described the effectiveness of both K. xylinus isolates and Kombucha in the production of BC, this study investigated the change in microbial communities across several generations of sub-culturing and the impact of these communities on BC yield. Using Kombucha and the single isolate strain K. xylinus as inocula in Hestrin and Schramm liquid growth media, BC pellicles were propagated. The resulting pellicles and residual liquid media were used to further inoculate fresh liquid media, and this process was repeated over three generations. For each generation, the thickness of the pellicles and their appearance under SEM were recorded. 16S rRNA sequencing was conducted on both pellicles and liquid media samples to assess changes in communities. The results indicated that the genus Komagataeibacter was the most abundant species in all samples. Cultures seeded with Kombucha yielded thicker cellulose pellicles than those seeded with K. xylinus, but all the pellicles had similar nanofibrillar structures, with a mix of liquid and pellicle inocula producing the best yield of BC after three generations of sub-culturing. Therefore, Kombucha starter cultures produce BC pellicles which are more reproducible across generations than those created from pure isolates of K. xylinus and could provide a reproducible sustainable model for generating textile materials.

WEARABLES FOR DISABLED AND EXTREME SPORTS

ALLEN, T., SHEPHERD, J., WOOD, J., TYLER, D., DUNCAN, O.

Digital Health Exploring Use and Integration of Wearables - Academic Press (May 2021)

https://www.sciencedirect.com/science/article/pii/B9780128189146000168?via%3Dihub

This chapter is concerned with the use of wearable devices for disabled and extreme sports. These sporting disciplines offer unique challenges for sports scientists and engineers. Disabled athletes often rely on and utilize more specialist equipment than able-bodied athletes. Wearable devices could be particularly useful for monitoring athlete-equipment interactions in disability sport, with a view to improving comfort and performance, while increasing accessibility and reducing injury risks. Equipment also tends to be key for so called “extreme” sports, such as skiing, snowboarding, mountain biking, bicycle motocross, rock climbing, surfing, and white-water kayaking. These sports are often practiced outdoors in remote and challenging environments, with athletes placing heavy demands on themselves and their equipment. Extreme sports also encompass disability sports, like sit skiing and adaptive mountain biking, and the popularity and diversity of such activities is likely to increase with improvements in technology and training, as well as with the support of organizations like the High Fives Foundation (highfivesfoundation.org) and Disability Snowsport, United Kingdom (disabilitysnowsport.org.uk). Within this chapter in these two sporting contexts, wearable devices are broadly associated with those that can be used to monitor the kinetics and kinematics of an athlete and their equipment. This chapter will first consider image-based alternatives and then focus on wearable sensors, in three main sections covering, (1) sports wearables, (2) disability sport and the use of wearables, and (3) extreme sport and the use of wearables, as well as making recommendations for the future.

WEARABLE ELECTRONIC TEXTILES

WOOD JE, TYLER D

Textile Progress - Taylor & Francis (Dec 2020)

https://www.tandfonline.com/toc/ttpr20/51/4?nav=tocList

Whilst the bulk of products classified as wearable technologies are watch-like bands that are worn on arms and legs, there is growing interest not only in garments that incorporate sensors and actuators, but also in sensors and actuators that are textile-based. The vision is for information-gathering garments where the electronic components are both inconspicuous and comfortable, and where the data gathered is integrated into a broader information-rich infrastructure. Fundamental to realising this goal is the extensive use of smart materials and conductive textiles, which are here reviewed. Advances in textile-based sensors and actuators are documented, as are also developments in the generation and storage of electrical power. Also addressed are the protocols and available information technologies that are relevant for integrating these products within an Internet of Things (IoT) framework. The procedures and practices for developing apparel products incorporating these technologies are discussed. Some insights into the state-of-the-art are gained from examining commercial products and the reports of interdisciplinary research projects. The conclusion is largely that we are at an early stage of realising the IoT vision, but that prototypes emerging justify an attitude of cautious optimism.

Encyclopedia of Renewable and Sustainable Materials. Elsevier (Jan 2020)

https://www.sciencedirect.com/science/article/pii/B9780128035818109828

Through millions of years, biological structures have survived due to their ability to adapt to their changing environments. Sportswear is a field that increasingly demands innovation to improve both performance and comfort. To meet these demands, sportswear product developers look to nature for inspiration, exploring how the natural world meets demands such as breathability, flexibility, comfort, and impact protection. This article will review the major developments in biomimetics in relation to sporting goods and apparel and how the natural world has influenced some of sportswear’s most recent innovations.

 A WEARABLE FES COMPRESSION GARMENT 

BENNETT R, MCDONNELL C, TYLER D, WOOD J.

E-Textiles Conference 2019 Proceedings (Dec 2019)

https://www.mdpi.com/2504-3900/32/1/17

Functional electrical stimulation is commonly used as a rehabilitation therapy to support the movement of individuals who have suffered traumatic spinal cord injury. Recently, there has been a focused interest on the development of textile electrodes, as they pose many benefits over traditional electrodes. This study presents design considerations and the feasibility of a wearable FES garment sleeve using flexible and extensible screen-printed electrodes

BIOINSPIRATION IN FASHION - A REVIEW

WOOD JE

Biomimetics (Feb 2019)

https://doi.org/10.3390/biomimetics4010016

Journal article

This paper provides an overview of the main technologies currently being investigated in the textile industry as alternatives to contemporary fashion fabrics. The present status of the textile industry and its impact on the environment is discussed, and the key drivers for change are highlighted. Historical use of bioinspiration in synthetic textiles is evaluated, with the impact of these developments on the fashion and apparel industries described. The review then discusses the move to nature as a supplier of new fabric sources with several alternatives explored, drawing special attention to the sustainability and performance aspects of these new sources.

FABRICS FOR PERFORMANCE CLOTHING

SABIR T, WOOD JE

Book chapter

 

SMART MATERIALS FOR SPORTSWEAR 

WOOD JE

Book chapter

ARE MICROBES THE FUTURE OF FASHION?

WOOD JE

The Microbiologist (June 2017)

Article in Journal of the Society of Applied Microbiology

REVOLUTIONS IN WEARABLE TECHNOLOGY FOR APPAREL

WOOD JE

High-Performance Apparel Materials, Development and Applications. Woodhead. (Apr 2017)

https://www.sciencedirect.com/science/article/pii/B978008100904800016X?via%3Dihub

This chapter discusses the field of wearable technologies in apparel. It starts by providing an overview and exploration of the meaning of wearable technologies in clothing. It goes on to explore innovations in the field, from the earliest considerations to cutting-edge developments. Sensors, power sources, and applications in sport, health care, and fashion are also discussed, concluding with an overview of the future of the sector.